Finite Mathematik Beispiele

Bestimme die Determinante [[1,14,3,0],[0,20,2,3],[3,14,1,2],[2,12,0,1]]
Schritt 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Consider the corresponding sign chart.
Schritt 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 1.3
The minor for is the determinant with row and column deleted.
Schritt 1.4
Multiply element by its cofactor.
Schritt 1.5
The minor for is the determinant with row and column deleted.
Schritt 1.6
Multiply element by its cofactor.
Schritt 1.7
The minor for is the determinant with row and column deleted.
Schritt 1.8
Multiply element by its cofactor.
Schritt 1.9
The minor for is the determinant with row and column deleted.
Schritt 1.10
Multiply element by its cofactor.
Schritt 1.11
Add the terms together.
Schritt 2
Mutltipliziere mit .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Consider the corresponding sign chart.
Schritt 3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 3.1.3
The minor for is the determinant with row and column deleted.
Schritt 3.1.4
Multiply element by its cofactor.
Schritt 3.1.5
The minor for is the determinant with row and column deleted.
Schritt 3.1.6
Multiply element by its cofactor.
Schritt 3.1.7
The minor for is the determinant with row and column deleted.
Schritt 3.1.8
Multiply element by its cofactor.
Schritt 3.1.9
Add the terms together.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 3.3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Mutltipliziere mit .
Schritt 3.3.2.1.2
Mutltipliziere mit .
Schritt 3.3.2.2
Subtrahiere von .
Schritt 3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 3.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1
Mutltipliziere mit .
Schritt 3.4.2.1.2
Mutltipliziere mit .
Schritt 3.4.2.2
Subtrahiere von .
Schritt 3.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1
Mutltipliziere mit .
Schritt 3.5.1.2
Mutltipliziere mit .
Schritt 3.5.2
Subtrahiere von .
Schritt 3.5.3
Addiere und .
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Consider the corresponding sign chart.
Schritt 4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 4.1.3
The minor for is the determinant with row and column deleted.
Schritt 4.1.4
Multiply element by its cofactor.
Schritt 4.1.5
The minor for is the determinant with row and column deleted.
Schritt 4.1.6
Multiply element by its cofactor.
Schritt 4.1.7
The minor for is the determinant with row and column deleted.
Schritt 4.1.8
Multiply element by its cofactor.
Schritt 4.1.9
Add the terms together.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 4.3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Mutltipliziere mit .
Schritt 4.3.2.1.2
Mutltipliziere mit .
Schritt 4.3.2.2
Subtrahiere von .
Schritt 4.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 4.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1.1
Mutltipliziere mit .
Schritt 4.4.2.1.2
Mutltipliziere mit .
Schritt 4.4.2.2
Subtrahiere von .
Schritt 4.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1.1
Mutltipliziere mit .
Schritt 4.5.1.2
Mutltipliziere mit .
Schritt 4.5.2
Addiere und .
Schritt 4.5.3
Subtrahiere von .
Schritt 5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Consider the corresponding sign chart.
Schritt 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.1.4
Multiply element by its cofactor.
Schritt 5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.1.6
Multiply element by its cofactor.
Schritt 5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.1.8
Multiply element by its cofactor.
Schritt 5.1.9
Add the terms together.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Mutltipliziere mit .
Schritt 5.3.2.1.2
Mutltipliziere mit .
Schritt 5.3.2.2
Subtrahiere von .
Schritt 5.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Mutltipliziere mit .
Schritt 5.4.2.1.2
Mutltipliziere mit .
Schritt 5.4.2.2
Subtrahiere von .
Schritt 5.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.1
Mutltipliziere mit .
Schritt 5.5.1.2
Mutltipliziere mit .
Schritt 5.5.2
Addiere und .
Schritt 5.5.3
Addiere und .
Schritt 6
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Mutltipliziere mit .
Schritt 6.1.3
Mutltipliziere mit .
Schritt 6.2
Addiere und .
Schritt 6.3
Addiere und .
Schritt 6.4
Addiere und .